文章摘要
黄鸿君1 ,覃利华2*.带混合保费和投资复合Poisson-Geometric风险模型 的生存概率[J].海南师范大学学报自科版,2022,35(3):260-267
带混合保费和投资复合Poisson-Geometric风险模型 的生存概率
The Survival Probability of an Poisson-Geometric Risk Model withMixed Premium and Investment
  
DOI:10.12051/j.issn.1674-4942.2022.03.004
中文关键词: 复合Poisson-Geometric过程  生存概率  积分微分方程  混合保费
英文关键词: compound Poisson-Geometric process  survival probability  integral-differential equations  mixed premium
基金项目:广西高校中青年教师科研基础能力提升项目(2021KY0767);广西民族师范学院科研经费资助项目 (2021YB054)
作者单位
黄鸿君1 ,覃利华2* 1. 广西民族师范学院 教育科学学院广西 崇左 532200 2. 广西民族师范学院 数理与电子信息工程学院广西 崇左 532200 
摘要点击次数: 300
全文下载次数: 342
中文摘要:
      在考虑到保费收入和通货膨胀等随机因素的干扰以及保险公司将多余资本用于投资 来提高其赔付能力的基础上,本文对经典风险模型进行了推广。首先,建立了混合保费收取下带 投资和扰动的双复合Poisson-Geometric 过程的双险种风险模型,随机保费收入服从复合Poisson过 程,理赔过程服从复合Poisson-Geometric过程;其次,应用全期望公式,推导了该模型生存概率的积 分微分方程;最后,当保费、理赔过程服从特定指数分布时,得到其满足的微分方程。
英文摘要:
      Taking into account the disturbance of random factors such as premium income and inflation, as well as the ex⁃ cess capital invested by insurance companies to improve their payability, the classical risk model is extended in this paper. Firstly, a double risk model with investment and perturbation is established under the mixed premium collection. The sto⁃ chastic premium income follows the compound Poisson process, and the claims process follows the compound Poisson-Geo⁃ metric process. Secondly, the integral differential equation of the survival probability of the model is derived by using the to⁃ tal expectation formula. Finally, when the premium and claim process obey a specific exponential distribution, the differen⁃ tial equation satisfied is obtained.
查看全文   查看/发表评论  下载PDF阅读器
关闭