文章摘要
林庆泽.经典Volterra 型算子在导数Hardy 空间上的 不变子空间[J].海南师范大学学报自科版,2020,33(3):276-279
经典Volterra 型算子在导数Hardy 空间上的 不变子空间
The Invariant Subspaces of Classical Volterra Type Operators onDerivative Hardy Spaces
  
DOI:10.12051/j.issn.1674-4942.2020.03.006
中文关键词: Volterra型算子  导数Hardy空间  不变子空间  shift算子
英文关键词: Volterra operator  derivative Hardy space  invariant subspace  shift operator
基金项目:国家自然科学基金资助项目(11801094)
作者单位
林庆泽 中山大学数学学院广东广州510275 
摘要点击次数: 690
全文下载次数: 322
中文摘要:
      目前对于一般的Volterra 型算子,其不变子空间是较难刻画的。文章主要通过shift 算 子的相关性质研究了最经典的两个Volterra 型算子在导数Hardy 空间上的不变子空间问题,并首次 给出了它们的结构的刻画。最后留下一个待解问题,期待未来在这个问题上有实质性的进展。
英文摘要:
      At present, it is difficult to characterize the invariant subspaces of general Volterra type operators. The paper mainly studied the invariant subspace problems of the two most classical Volterra type operators acting on the derivative Hardy spaces through the related properties of the shift operators and obtained the first description of their structure. Final⁃ ly, this paper proposed a problem to be solved and looked forward to substantial progress on this issue in the future.
查看全文   查看/发表评论  下载PDF阅读器
关闭