严良清,马丽*.一类中立随机延迟微分方程解的指数稳定性[J].海南师范大学学报自科版,2018,31(4):397-404 |
一类中立随机延迟微分方程解的指数稳定性 |
Exponential Stability of Solutions for A Classof Neutral Stochastic Delay Differential Equations |
|
DOI:10.12051/j.issn.1674-4942.2018.04.009 |
中文关键词: Levy 跳 Markov 状态转换 split-step θ 指数稳定性 |
英文关键词: Levy jump Markovian switching split-step θ exponential stability |
基金项目:海南省高等学校科学研究项目(Hnky2018ZD-6);国家自然科学基金(11861029);海南省研究生创新科研课
题(Hys2018-237) |
|
摘要点击次数: 574 |
全文下载次数: 304 |
中文摘要: |
文章研究了一类带Levy 跳且带Markov 状态转换的中立随机延迟微分方程数值解的指
数稳定性,在局部Lipschitz、线性增长、压缩映射条件下,利用split-step θ方法证明了带Levy 跳和
Markov 状态转换的中立延迟微分方程解几乎处处指数稳定,从而推广了带Possion 跳不带Markov 状
态转换的结果。 |
英文摘要: |
In this paper, we study exponential stability for neutral stochastic delay differential equations with jumps and
Markovian switching. Under locally Lipschitz condition, linear growth and constractive mapping condition, we prove the nu⁃
merical solution is exponential stability by split-step θ-method. These results generalize the corresponding results for neu⁃
tral stochastic delay differential equations with Possion jumps and without Markovian switching. |
查看全文
查看/发表评论 下载PDF阅读器 |
关闭 |