文章摘要
重复可读态,自发塌缩和量子/经典界限
Repeatedly readable state, spontaneous collapse, and quantum/classical boundary
投稿时间:2025-04-01  修订日期:2025-04-23
DOI:
中文关键词: 量子测量问题  自发塌缩模型  量子/经典界限  重复可读性
英文关键词: quantum measurement problem  spontaneous collapse model  quantum/classical boundary  repeatable readability
基金项目:
作者单位邮编
彭小富 华中科技大学 571199
罗宇航 海南师范大学 
朱江 上海交通大学 
华邦辉 华中科技大学 
陈雪楠 华中科技大学 
连丹丹 海南师范大学 
陈子维 海南师范大学 
陈相松* 海南师范大学 571199
摘要点击次数: 24
全文下载次数: 0
中文摘要:
      本文提出了一个模型来确定量子/经典界限。 该模型引入了态叠加的自发塌缩:$\frac{d}{dt} \rho_{ij} =-\frac{i}{\hslash}[H,\rho]_{ij}-\rho_{ij}/\tau_{ij}$。与其他塌缩模型不同,这里的塌缩尺度$\tau_{ij}$不包含任何普适参数,而是由两个态$| i\rangle $和$| j\rangle$本身来指定: 如果每个态在\textbf{原则上}都是可重复读取的(通常通过量子非破坏(QND)测量),则$\tau_{ij}$就是\textbf{潜在地}区分这两个态所需的测量时间,并且该塌缩自发发生,\textbf{无需}任何实际监控。 若非如此,则$\tau_{ij}=\infty$,这意味着态之间将不会塌缩并能永远处于叠加。这种情况会出现在:一种态无法被重复读取,或者在特定情况下无法区分两种态(例如在 Rabi 振荡中)。 详细分析表明,对于“阱中的薛定谔猫”,如果 $E D \gg 4\pi \hslash c$,则 $|{\rm here} \rangle$ 和 $| {\rm there} \rangle $ 的叠加是被禁止的,如果 $E D \le 4\pi \hslash c$,则叠加被允许。其中 $D$ 是阱分离的距离,$ E$ 是阱的能隙,可以用 $ M v^2$ 估算。 例如,假设 $D\sim 10 \mu {\rm m}$ 和 $v\sim 10^2{\rm m/s}$,则量子/经典边界位于 $M\sim 2\times 10^3 {\rm GeV}/c^2$ 处。 该模型还限制“自由的薛定谔猫”在 $p\theta d\ge8\hslash$ 时不显示干涉条纹,其中 $p= Mv$,$\theta $ 是两条轨迹所形成的角度,$d$ 是狭缝宽度。对于典型值 $v\sim 10^3{\rm m/s}$、$\theta \sim 10^{-5}$ 和 $d\sim 10{\rm \mu m}$,量子/经典边界位于 $M\sim 5 {\rm GeV}/c^2$ 处。令人印象深刻的是,用氦原子进行物质波干涉的实验恰好处在该边缘。 另外,该模型对无质量光子的相干长度没有限制,因此迈克尔逊干涉仪的臂可以做到任意长。 本文提出的自发塌缩可能发生在孤立系统中,并且与环境相互作用引起的退相干效应平行存在。
英文摘要:
      We propose a model to identify the quantum/classical boundary. The model introduces a spontaneous collapse of state superposition: $\frac{d}{dt} \rho_{ij} =-\frac{i}{\hslash}[H,\rho]_{ij}-\rho_{ij}/\tau_{ij}$. Different from other collapse models, the collapsing scale $\tau_{ij}$ here does not contain a universal parameter, but is specified by the two states $| i\rangle $ and $ | j\rangle$: If each state is \textit{in principle} repeatedly readable (typically by a quantum non-demolition (QND) measurement), then $\tau_{ij}$ is the \textit{potentially} needed measuring time to discriminate the two states, and the collapse occurs spontaneously \textit{without} any actual monitoring. Otherwise, $\tau_{ij}=\infty$, which means no collapse and everlasting superposition. This happens if one state is not repeatedly readable, or if the two states cannot possibly be discriminated in a particular circumstance (for example in the Rabi oscillation). Detailed analysis shows that for a ``trapped Schr{\"o}dinger's cat', the superposition of $|{\rm here} \rangle$ and $| {\rm there} \rangle $ is forbidden if $E D \gg 4\pi \hslash c$, and allowed if $E D \le 4\pi \hslash c$, where $D$ is the trap separation and $ E$ is the energy gap, which can be estimated with $ M v^2$. For example, if $D\sim 10 \mu {\rm m}$ and $v\sim 10^2{\rm m/s}$, then the quantum/classical boundary is at $M\sim 2\times 10^3 {\rm GeV}/c^2$. The model also constrains a ``free Schr{\"o}dinger's cat' to display double-slit interference if $p\theta d\ge 8\hslash$, where $p= Mv$, $\theta $ is the angle spanned by the two trajectories, and $d$ is the slit width. For typical values $v\sim 10^3{\rm m/s}$, $\theta \sim 10^{-5}$, and $d\sim 10{\rm \mu m}$, the quantum/classical boundary is at $M\sim 5 {\rm GeV}/c^2$, which, impressively, is just marginal for the performed experiments with Helium. In contrast, this model sets no limit on the coherent length of massless photon, thus the arm of a Michelson interferometer can be arbitrarily long. The spontaneous collapse which we propose can occur for an isolated system, and parallels the decoherence induced by interaction with environment.
View Fulltext   查看/发表评论  下载PDF阅读器
关闭