| 程晓亮,宋宏博.一类四维Hartogs三角域的Bergman 核函数零点[J].海南师范大学学报自科版,2025,38(4):377-382 |
| 一类四维Hartogs三角域的Bergman 核函数零点 |
| Zeroes of the Bergman Kernels on a Class of Four-dimensional Hartogs Triangle Domains |
| |
| DOI:10.12051/j.issn.1674-4942.2025.04.001 |
| 中文关键词: Bergman核函数 Hartogs三角域 陆启铿域 零点问题 |
| 英文关键词: Bergman kernel function Hartogs triangle domain Lu Qi-Keng domain zero problem |
| 基金项目:国家自然科学基金项目(12026420);吉林省科技发展计划项目(YDZJ202201ZYTS627);吉林省教育厅“十三
五”科学技术项目(JJKH20200405KJ) |
|
| 摘要点击次数: 351 |
| 全文下载次数: 106 |
| 中文摘要: |
| 多复变函数论中,Bergman核函数零点的存在性一直备受关注。本文利用n维Hartogs
三角域的Bergman核函数公式计算出一类四维Hartogs三角域的Bergman核函数的显式形式,并证
明其Bergman核函数存在零点,即该四维Hartogs三角域是非陆启铿域。 |
| 英文摘要: |
| In the theory of several complex variables, the existence of zeros of the Bergman kernel function has always
been a topic of significant interest. This paper employs the formula for the Bergman kernel function of the n-dimensional
Hartogs triangle domain to compute the explicit form of the Bergman kernel function for a class of four-dimensional
Hartogs triangle domains. Furthermore, we demonstrate that its Bergman kernel function possesses zeros, thereby proving
that this four-dimensional Hartogs triangle domain is a non-Lu Qi-Keng domain. |
|
查看全文
查看/发表评论 下载PDF阅读器 |
| 关闭 |